Ecole d'été de mécanique théorique Théorie du contrôle

Objectives

The objective of the course is to study controllability of open-flows undergoing instabilities through the analysis of

- A model problem : non-parallel, non-linear Ginzburg-Landau equation
- Flow around cylinder for Re > 47 (incompressible Navier-Stokes equations)

Of particular interest will be the effect of non-normality in the linearized governing equations (in the Navier-Stokes equations, non-normality is due to the presence of the convection term $u \cdot \nabla u$).

We will try to answer the following questions:

- Can we modify the dynamics of a system?
- Can we suppress instability?
- With open-loop control, where should we perform actuation? At what frequency? At what amplitude?
- With **linear closed-loop control**, where should we place the actuator and sensor?

How?

 \Rightarrow Build nonlinear amplitude equations taking into account the effect of actuation on the system dynamics $\frac{dA}{dt} = \lambda A + \mu A |A|^2 + \nu E$

Quiberon 2019 denis.sipp@onera.fr

Intro

Navier-Stokes

Incompressible Navier-Stokes equations:

$$\begin{cases} \partial_t u + u \partial_x u + v \partial_y u = -\partial_x p + v (\partial_{xx} u + \partial_{yy} u) + f \\ \partial_t v + u \partial_x v + v \partial_y v = -\partial_y p + v (\partial_{xx} v + \partial_{yy} v) + g \\ -\partial_x u - \partial_y v = 0 \end{cases}$$

Can be recast into:

$$\mathcal{B}\partial_t w + \frac{1}{2}\mathcal{N}(w, w) + \mathcal{L}w = f$$

where:

$$w = \begin{pmatrix} u \\ p \end{pmatrix} \ f = \begin{pmatrix} f \\ 0 \end{pmatrix}$$

$$\begin{split} \mathcal{B} &= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \\ \mathcal{N}(w_1, w_2) &= \begin{pmatrix} u_1 \cdot \nabla u_2 + u_2 \cdot \nabla u_1 \\ 0 \end{pmatrix} \\ \mathcal{L} &= \begin{pmatrix} -\nu \Delta() & \nabla() \\ -\nabla \cdot () & 0 \end{pmatrix} \end{split}$$

Quiberon 2019 denis.sipp@onera.fr

Intro

DNS simulation of cylinder flow at Re=100

How does the system respond to forcing?

$$\mathcal{B}\partial_t w + \frac{1}{2}\mathcal{N}(w, w) + \mathcal{L}w = \tilde{E}e^{i\omega_f}f + \text{c.c}$$

Influence of ω_f , f, \tilde{E} ?

Quiberon 2019 denis.sipp@onera.fr

Intro

7

Open-loop control with time-periodic actuation

Harmonic forcing with synthetic jets

Glezer et al. ARFM 2002

Figure 7 Smoke of the flow around a circular cylinder visualization: (a) baseline; and (b) actuated: $\phi=0$, $\gamma=60^\circ$ and (c) 180° , and (d) $\phi=120^\circ$, $\gamma=180^\circ$.

$$\mathcal{B}\partial_t w + \frac{1}{2}\mathcal{N}(w, w) + \mathcal{L}w = 0$$

$$w = \tilde{E}e^{i\omega_f}g_{\text{intro}} + \text{c.c.} \text{ on } \partial\Gamma_c$$

Quiberon 2019 denis.sipp@onera.fr

Influence of ω_f , f, \tilde{E} ?

Open-loop control with cylinder

Outline of course

1/ Direct and adjoint global modes in open shear-flows (linear behaviour)

2/ Amplitude equations for control (nonlinear behaviour)

Two model problems:

1/ Cylinder flow at Re=100

2/ Non-parallel non-linear Ginzburg-Landau equations

Difficulty : Non-normality of linearized operator due to convection $\boldsymbol{u}\cdot\boldsymbol{\nabla}\boldsymbol{u}$ Operator:

$$u' \to u' \cdot \nabla u_b + u_b \cdot \nabla u'$$

is not symmetric.

Quiberon 2019 denis.sipp@onera.fr

Intro

Ginzburg-Landau

Forced nonparallel, nonlinear Ginzburg-Landau equation:

$$\begin{split} \partial_t w + U \partial_x w + w |w|^2 &= \mu(x) w + \gamma \partial_{xx} w + f(x,t) \\ \mu(x) &:= i \omega_0 + \mu_0 - \underbrace{\gamma \chi^4}_{=\mu_2} x^2 \\ |w| &\to 0 \text{ as } x \to \pm \infty \end{split}$$

and $U, \gamma, \omega_0, \mu_0, \mu_2$ are positive real constant, f(x, t) a "weak" forcing

Quiberon 2019 denis.sipp@onera.fr

Intro

11

Ginzburg-Landau

Advection:

$$\partial_t w + U \partial_x w = 0$$

Diffusion:

$$\partial_t w = \gamma \partial_{xx} w$$

Dissipative non-linearity:

$$\partial_t w + w|w|^2 = 0$$

$$\partial_t \left(\frac{|w|^2}{2}\right) + |w|^4 = 0 \Rightarrow \frac{\mathrm{d}}{\mathrm{dt}} \left(\int_{-\infty}^{+\infty} \frac{|w|^2}{2} dx\right) = -\int_{-\infty}^{+\infty} |w|^4 dx < 0$$

Localized in-space instability term:

Forcing:

$$\partial_t w = f(x, t)$$

Quiberon 2019

denis.sipp@onera.fr